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SCHNUR, P., V. P. RAIGOZA, M. R. SANCHEZ AND P. J. KULKOSKY. Cholecystokinin antagonizes morphine 
induced hypoactivity and hyper~lctivity in hamsters. PHARMACOL BIOCHEM BEHAV 25(5) 1067-1070, 1986.--Three 
experimental replications were used to test the effects of three doses (25, 50 or 75 p~g/kg) of cholecystokinin octapeptide 
ICCK-8) on morphine induced changes in activity. For each dose of CCK-8, running wheel activity of golden Syrian 
hamsters was monitored for three hours following a series of two injections. The first injection consisted of either saline or 
CCK-8, the second of either saline or morphine sulfate (15 mg/kg). Thus, in each replication four groups were created: 
Group SAL/SAL (n=8) received two saline injections, Group CCK/SAL (n=8) an injection of CCK-8 followed by an 
injection of saline, Group SAL/MS (n 8) an injection of saline followed by an injection of morphine and Group CCK/MS 
In=8) an injection of CCK-8 followed by an injection of morphine. Results indicated that a 25 gg/kg dose of CCK-8 blocked 
the hypoactivity elicited by morphine 40-60 rain after opiate injection, whereas a 75 ~g/kg dose of CCK-8 blocked the 
hyperactivity elicited by morphine 80-100 min after opiate injection. These findings are consistent with previous reports that 
CCK-8 antagonizes the effects of opiate agonists on a variety of behaviors and is supportive of the hypothesis that 
endogenous CCK-8 may antagonize endogenous opioid peptides in the control of behavior. 

Cholecystokinin octapeptide Hamsters Morphine Locomotor activity 

C H O L E C Y S T O K I N I N ,  the gastrointestinal and brain oc- 
tapeptide (CCK-8), exerts a variety of effects on behavior 
[16,33]. Moreover, accumulating evidence suggests that 
CCK-8 may function as an endogenous antagonist of opiate 
actions. First, the distribution of CCK-8 in the brain parallels 
that of the endogenous opiates [27]. Furthermore, CCK-8 
has actions that are opposite those of the opiates: in rats, for 
example, food intake increases following the administration 
of  morphine, butorphanol, beta-endorphin, and other opiate 
agonists [1, 13, 14, 17-19], but decreases following similar ad- 
ministration of CCK-8 [9,25]. In addition, CCK-8 antago- 
nizes opiate mediated behaviors: CCK-8 has been shown to 
antagonize morphine and beta-endorphin induced analgesia 
[6,7], butorphanol induced feeding [18], as well as the 
catalepsy induced by beta-endorphin [10]. Also, morphine 
antagonizes the intestinal and analgesic effects of  CCK-8 
[31,32] and development of  CCK antibodies potentiates 
morphine analgesia [8]. Finally, the CCK-8 antagonist, 
proglumide [4J, potentiates morphine induced analgesia [29] 
and hypoactivity [3], and prevents or reverses morphine 
tolerance [11, 28, 30]. 

Most of the direct evidence for the role of CCK-8 as an 
opiate antagonist rests upon demonstrations involving opiate 
analgesia or feeding in murid rodents. The present study ex- 
tends these findings to locomotor activity in a cricetid, the 
golden hamster. We investigated the effects of three doses of 

CCK-8 (25, 50 and 75 p~g/kg) on morphine ( 15 mg/kg) induced 
changes in hamster locomotor activity. Morphine's effects 
on locomotor activity in the hamster are well documented: at 
low doses, morphine has predominantly excitatory effects, 
whereas at high doses, inhibitory effects predominate 
[21,22]. At the dose employed here, morphine's dual actions 
are revealed in a biphasic time effect pattern: compared with 
saline controls, locomotor activity is first suppressed and 
then elevated [22]. Recent evidence indicates that both mor- 
phine induced sedation and hyperactivity are naloxone re- 
versible [20, 23, 24]. If CCK-8 acts as an opiate antagonist, 
then it too should antagonize morphine's effects on hamster 
locomotor activity. 

METHOD 

Subjects 

Ninety-six experimentally naive adult (89 female, 7 male) 
golden Syrian hamsters with a mean weight of 104.5 g were 
used. Fifty-two hamsters were obtained from Harlan 
Sprague-Dawley (Indianapolis, IN), 32 were obtained from 
Sasco, Inc. (Omaha, NE), and 12 were descended from 
animals obtained from Sasco. Thirty-two hamsters were 
used in each replication of  the experiment. They were 
housed individually in wire mesh stainless steel cages at an 
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FIG. 1. Mean (_+standard error) running wheel activity (revolutions) 
as a function of time blocks, for hamsters receiving saline and saline 
(SAL/SAL, n=8), saline and morphine (SAL/MS, n-8), 25 /xg/kg 
CCK-8 and saline (CCK/SAL, n 8), or 25 #g/kg CCK-8 and mor- 
phine (CCK/MS, n=8). 
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FIG. 2. Mean +standard error) running wheel activity (revolutions) 
as a function of time blocks, for hamsters receiving saline and saline 
(SAL/SAL, n=8), saline and morphine (SAL/MS, n-8), 50 p,g/kg 
CCK-8 and saline (CCK/SAL, n=8), or 50/zg/kg CCK-8 and mor- 
phine (CCK/MS, n=8). 

ambient temperature of approximately 23°C, maintained on a 
12:12 hour light-dark cycle (lights on at 7 a.m.), and given free 
access to tap water and shredded paper nesting material 
throughout the experiment. Animals received a daily food 
ration (Purina Rodent Lab Chow) after each experimental 
session sufficient to maintain 90% of their ad lib weights. 

Apparatus and Materials 

The apparatus consisted of sixteen identical activity 
wheels (Wahmann Co., Model LC-34) which were housed in 
a room dimly illuminated by two 15-watt bulbs. Running 
wheels were fitted with microswitches and interfaced 
(Lafayette minicomputer interface, Model No. 1180) to an 
Apple II Plus computer to record the number of wheel revo- 
lutions. An ambient noise level of approximately 72 dB (re: 
0.0002 dynes/cm", A scale) was maintained. 

Morphine injections consisted of 15 mg/kg doses of mor- 
phine sulfate (Lilly), expressed as the salt, dissolved in 1 ml 
of 0 . ~  w/v sodium chloride (saline). CCK-8 injections con- 
sisted of either 25, 50 or 75/zg/kg doses of sulfated cholecys- 
tokinin octapeptide (Squibb, SQ 19,844, Lot No. NN020NC) 
dissolved in saline. All injections were administered sub- 
cutaneously (SC) in the dorsal surface of the neck in 1 ml/kg 
volumes. 

Pro('edlll'd 

Three replications of the experimental design, one at each 
dose, were completed. Experimental procedures in each 
replication spanned four successive days: on each of the first 
three days, animals were injected with saline and placed in 
the running wheels for a three hour baseline session. These 
sessions served to acclimate the animals to the running 
wheels and to the handling/injection procedures. On the 
fourth day, animals received two injections, spaced 10 min- 
utes apart, before being placed in the running wheels for a 
three hour test session. Animals were assigned randomly to 

four groups: Group SAL/SAL (n-8)  received two saline in- 
jections; Group CCK/SAL (n=8) an injection of CCK-8 
followed by an injection of saline: Group SAL/MS (n=8) an 
injection of saline followed by an injection of morphine: 
Group CCK/MS (n=8) an injection of CCK-8 followed by an 
injection of morphine. This basic design was replicated three 
times, once for each dose of CCK-8. The number of wheel 
revolutions was recorded every 20 min for each animal. The 
level of significance for all statistical analyses was set at 
p<0.05. 

RESULTS 

Mean (+standard error) running wheel activity (revolu- 
tions) as a function of 20 min blocks, for hamsters injected 
with saline and saline (n=8), saline and morphine (n=8), 
CCK and saline In=8), or CCK and morphine In=8) is de- 
picted in Figs. 1, 2 and 3 for CCK-8 doses of 25, 50 and 75 
p~g/kg, respectively. 

A 2×2×3×9  [First Injection (CCK vs. saline) × Second 
Injection (morphine vs. saline) x CCK Dose x Time Blocks] 
split-plot analysis of variance revealed significant main ef- 
fects of CCK dose, F(2,84)-6.05, and time blocks, 
F(8,672)=37.60 and significant interactions of CCK dose and 
time blocks, F(16,672)-3.65, second injection and time 
blocks, F(8,672)=58.58, and CCK, second injection and time 
blocks, F(8,672)-4.84. No other main effect or interaction 
was found significant. 

The effect of time and the interaction of morphine and 
time reflect the expected biphasic effect ot" the 15 mg/kg dose 
of morphine on hamster running wheel activity [21,22]. The 
effect of CCK dose and the interaction of dose with time 
blocks reflects the decreased activity at the 75/xg/kg dose of 
CCK. The three way interaction of CCK and morphine and 
time suggests that CCK affects the response to morphine at 
some time blocks. Student-Newman-Keuls tests revealed 
that, at the 25 /xg/kg dose of CCK, the difference between 
Group SAL/MS and Group CCK/MS was significant during 
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FIG. 3, Mean (+_ standard error) running wheel activity (revolutions) 
as a function of time blocks, for hamsters receiving saline and saline 
(SAL/SAL, n-8), saline and morphine (SAL/MS, n-8), 75 /zg/kg 
CCK-8 and saline (CCK/SAL, n=8) or 75 /xg/kg CCK-8 and mor- 
phine (CCK/MS, n-8). 

the third 20 rain time block (see Fig. 1). Similarly, at the 75 
/xg/kg dose of CCK, the difference between Group SAL/MS 
and Group CCK/MS was significant during the fifth 20 rain 
time block (see Fig. 3). That is, mean running wheel activity 
increased 20-40 min after the morphine injection in animals re- 
ceiving a prior injection of 25/xg/kg CCK, relative to hamsters 
receiving saline prior to morphine. Conversely, mean activ- 
ity decrea.~ed 80-100 rain after the morphine injection in 
animals receiving a prior injection of 75/zg/kg CCK. relative 
to hamsters receiving saline prior to morphine. 

DISCUSSION 

The present data reveal a new, though limited antagonist 
action of CCK-8 on morphine induced behavioral change. At 
the relatively high doses of 25 and 75 /zg/kg SC, CCK-8 
blocked the hypoactivity and hyperactivity effects of mor- 
phine on hamster running wheel behavior at 40-60 min and 
80-100 rain after opiate injection, respectively. In an initial 
pilot study, no interaction of CCK-8 and morphine on ham- 
ster running wheel activity was observed at 5.0/xg/kg CCK 

(unpublished observations). Comparatively high doses of 
CCK-8 (cf. [33]) are required to affect morphine elicited 
changes in activity in golden hamsters. 

The effect of high doses of CCK-8 on morphine-induced 
hypoactivity and hyperactivity in hamsters compares with 
the effects of naloxone and naltrexone, which can block both 
morphine sedation and hyperactivity [20, 23, 24]. The pres- 
ent effect contrasts with the often reported analgesia and 
reduction in activation or motility in humans, rats and mice 
after administration of CCK-like peptides alone [5, 26, 32, 
33], although a tendency of 75/xg/kg CCK to depress activity 
in hamsters was observed at 0-40 min after CCK and saline 
injections. Cricetids and murids display many other well- 
documented differences in response to opiates and peptides 
(e.g., [12,15]). 

Results of this experiment are consistent with previous 
reports that CCK-8 antagonizes the effects of opiate agonists 
on analgesia [6,7], catalepsy [10], and feeding [1,18]. Our 
findings are also in accord with the reports that proglumide, 
a CCK blocker, or active immunization against CCK poten- 
tiates morphine-induced analgesia [8,29] and hypoactivity 
[3]. The coextensive distribution of CCK-8 and endogenous 
opiates in brain [27] allows for many central sites of opioid 
peptide and CCK-like peptide interaction. For example, the 
dorsomedial hypothalamus is required for both naloxone and 
CCK-8 to inhibit feeding [2]. Alternatively, the interactions 
of the central and peripheral actions of CCK-8 and/or opioid 
peptides may account for the observed antagonism. 

Thus, we have found further experimental evidence to 
support the hypothesis that endogenous CCK-8 may antag- 
onize endogenous opioid peptides in the control of behavior. 
We have extended this putative interactive control of CCK-8 
and opioids to the case of locomotor behavior in hamsters. 
CCK-8 and the endogenous opioids may well constitute inte- 
grative peptide co-antagonists in the coordinated control of 
several classes of adaptive behaviors. Our evidence 
strengthens the notion that CCK-8 is a candidate for the 
hypothesized endogenous naloxone-like substance [11,13]. 
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