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SCHNUR, P., V. P. RAIGOZA, M. R. SANCHEZ AND P. J. KULKOSKY. Cholecystokinin antagonizes morphine
induced hypoactivity and hyperactivity in hamsters. PHARMACOL BIOCHEM BEHAYV 25(5) 1067-1070, 1986.—Three
experimental replications were used to test the effects of three doses (25, 50 or 75 ug/kg) of cholecystokinin octapeptide
(CCK-8) on morphine induced changes in activity. For each dose of CCK-8, running wheel activity of golden Syrian
hamsters was monitored for three hours following a series of two injections. The first injection consisted of either saline or
CCK-8, the second of either saline or morphine sulfate (15 mg/kg). Thus, in each replication four groups were created:
Group SAL/SAL (n=8) received two saline injections, Group CCK/SAL (n=8) an injection of CCK-8 followed by an
injection of saline, Group SAL/MS (n=8) an injection of saline followed by an injection of morphine and Group CCK/MS
(n=8) an injection of CCK-8 followed by an injection of morphine. Results indicated that a 25 ug/kg dose of CCK-8 blocked
the hypoactivity elicited by morphine 40-60 min after opiate injection, whereas a 75 ug/kg dose of CCK-8 blocked the
hyperactivity elicited by morphine 80-100 min after opiate injection. These findings are consistent with previous reports that
CCK-8 antagonizes the effects of opiate agonists on a variety of behaviors and is supportive of the hypothesis that
endogenous CCK-8 may antagonize endogenous opioid peptides in the control of behavior.

Cholecystokinin octapeptide Hamsters Morphine

Locomotor activity

CHOLECYSTOKININ, the gastrointestinal and brain oc-
tapeptide (CCK-8), exerts a variety of effects on behavior
[16,33]. Moreover, accumulating evidence suggests that
CCK-8 may function as an endogenous antagonist of opiate
actions. First, the distribution of CCK-8 in the brain parallels
that of the endogenous opiates [27]. Furthermore, CCK-8
has actions that are opposite those of the opiates: in rats, for
example, food intake increases following the administration
of morphine, butorphanol, beta-endorphin, and other opiate
agonists [1, 13, 14, 17-19], but decreases following similar ad-
ministration of CCK-8 [9,25]. In addition, CCK-8 antago-
nizes opiate mediated behaviors: CCK-8 has been shown to
antagonize morphine and beta-endorphin induced analgesia
[6,7], butorphanol induced feeding [18], as well as the
catalepsy induced by beta-endorphin [10]. Also, morphine
antagonizes the intestinal and analgesic effects of CCK-8
[31.32] and development of CCK antibodies potentiates
morphine analgesia [8]. Finally, the CCK-8 antagonist,
proglumide [4], potentiates morphine induced analgesia [29]
and hypoactivity [3], and prevents or reverses morphine
tolerance [11, 28, 30].

Most of the direct evidence for the role of CCK-8 as an
opiate antagonist rests upon demonstrations involving opiate
analgesia or feeding in murid rodents. The present study ex-
tends these findings to locomotor activity in a cricetid, the
golden hamster. We investigated the effects of three doses of
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CCK-8(25, 50 and 75 ng/kg) on morphine (15 mg/kg) induced
changes in hamster locomotor activity. Morphine’s effects
on locomotor activity in the hamster are well documented: at
low doses, morphine has predominantly excitatory effects,
whereas at high doses, inhibitory effects predominate
[21,22]. At the dose employed here, morphine’s dual actions
are revealed in a biphasic time effect pattern: compared with
saline controls, locomotor activity is first suppressed and
then elevated [22]. Recent evidence indicates that both mor-
phine induced sedation and hyperactivity are naloxone re-
versible [20, 23, 24}. If CCK-8 acts as an opiate antagonist,
then it too should antagonize morphine’s effects on hamster
locomotor activity.

METHOD
Subjects

Ninety-six experimentally naive adult (89 female, 7 male)
golden Syrian hamsters with a mean weight of 104.5 g were
used. Fifty-two hamsters were obtained from Harlan
Sprague-Dawley (Indianapolis, IN), 32 were obtained from
Sasco, Inc. (Omaha, NE), and 12 were descended from
animals obtained from Sasco. Thirty-two hamsters were
used in each replication of the experiment. They were
housed individually in wire mesh stainless steel cages at an
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FIG. 1. Mean (+standard error) running wheel activity (revolutions)
as a function of time blocks, for hamsters receiving saline and saline
(SAL/SAL. n=8). saline and morphine (SAL/MS, n=8). 25 ug/kg
CCK-8 and saline (CCK/SAL. n=8). or 25 ug/kg CCK-8 and mor-
phine (CCK/MS, n=8).

ambient temperature of approximately 23°C, maintained on a
12:12 hour light-dark cycle (lights on at 7 a.m.), and given free
access to tap water and shredded paper nesting material
throughout the experiment. Animals received a daily food
ration (Purina Rodent Lab Chow) after each experimental
session sufficient to maintain 90% of their ad lib weights.

Apparatus and Materials

The apparatus consisted of sixteen identical activity
wheels (Wahmann Co., Model LC-34) which were housed in
a room dimly illuminated by two 15-watt bulbs. Running
wheels were fitted with microswitches and interfaced
(Lafayette minicomputer interface, Model No. 1180) to an
Apple I1 Plus computer to record the number of wheel revo-
lutions. An ambient noise level of approximately 72 dB (re:
0.0002 dynes/cm?, A scale) was maintained.

Morphine injections consisted of 15 mg/kg doses of mor-
phine sulfate (Lilly), expressed as the salt, dissolved in 1 ml
of 0.9% w/v sodium chloride (saline). CCK-8 injections con-
sisted of either 25, 50 or 75 pg/kg doses of sulfated cholecys-
tokinin octapeptide (Squibb, SQ 19,844, Lot No. NN020NC)
dissolved in saline. All injections were administered sub-
cutaneously (SC) in the dorsal surface of the neck in 1 ml/kg
volumes.

Procedure

Three replications of the experimental design, one at each
dose, were completed. Experimental procedures in each
replication spanned four successive days: on each of the first
three days, animals were injected with saline and placed in
the running wheels for a three hour baseline session. These
sessions served to acclimate the animals to the running
wheels and to the handling/injection procedures. On the
fourth day, animals received two injections, spaced 10 min-
utes apart, before being placed in the running wheels for a
three hour test session. Animals were assigned randomly to
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FIG. 2. Mean (=standard error) running wheel activity (revolutions)
as a function of time blocks. for hamsters receiving saline and saline
(SAL/SAL. n=8), saline and morphine (SAL/MS, n=8), 50 ug/kg
CCK-8 and saline (CCK/SAL, n=8), or 50 ug/kg CCK-8 and mor-
phine (CCK/MS. n=8).

four groups: Group SAL/SAL (n=8) received two saline in-
jections; Group CCK/SAL (n=8) an injection of CCK-8
followed by an injection of saline; Group SAL/MS (n=8) an
injection of saline followed by an injection of morphine;
Group CCK/MS (n=8) an injection of CCK-8 followed by an
injection of morphine. This basic design was replicated three
times, once for each dose of CCK-8. The number of wheel
revolutions was recorded every 20 min for each animal. The
level of significance for all statistical analyses was set at
»<0.05.

RESULTS

Mean (*standard error) running wheel activity (revolu-
tions) as a function of 20 min blocks, for hamsters injected
with saline and saline (n=8), saline and morphine (n=38),
CCK and saline (n=8), or CCK and morphine (n=8) is de-
picted in Figs. 1. 2 and 3 for CCK-8 doses of 25, 50 and 75
ng/kg, respectively.

A 2X2x3x9 [First Injection (CCK vs. saline) x Second
Injection (morphine vs. saline) x CCK Dose x Time Blocks)
split-plot analysis of variance revealed significant main ef-
fects of CCK dose, F(2,84)=6.05, and time blocks,
F(8,672)=37.60 and significant interactions of CCK dose and
time blocks, F(16,672)=3.65, second injection and time
blocks. F(8,672)=58.58, and CCK, second injection and time
blocks, F(8,672)=4.84. No other main effect or interaction
was found significant.

The effect of time and the interaction of morphine and
time reflect the expected biphasic effect of the 15 mg/kg dose
of morphine on hamster running wheel activity [21,22]. The
effect of CCK dose and the interaction of dose with time
blocks reflects the decreased activity at the 75 ug/kg dose of
CCK. The three way interaction of CCK and morphine and
time suggests that CCK affects the response to morphine at
some time blocks. Student-Newman-Keuls tests revealed
that, at the 25 ug/kg dose of CCK, the difference between
Group SAL/MS and Group CCK/MS was significant during
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FIG. 3. Mean (+standard error) running wheel activity (revolutions)
as a function of time blocks. for hamsters receiving saline and saline
(SAL/SAL. n=8), saline and morphine (SAL/MS, n=8), 75 ug/kg
CCK-8 and saline (CCK/SAL. n=8) or 75 ug/kg CCK-8 and mor-
phine (CCK/MS, n=8).

the third 20 min time block (see Fig. 1). Similarly, at the 75
ne/kg dose of CCK, the difference between Group SAL/MS
and Group CCK/MS was significant during the fifth 20 min
time block (see Fig. 3). That is, mean running wheel activity
increased 2040 min after the morphine injection in animals re-
ceiving a prior injection of 25 ug/kg CCK, relative to hamsters
receiving saline prior to morphine. Conversely, mean activ-
ity decreased 80-100 min after the morphine injection in
animals receiving a prior injection of 75 ug/kg CCK. relative
to hamsters receiving saline prior to morphine.

DISCUSSION

The present data reveal a new, though limited antagonist
action of CCK-8 on morphine induced behavioral change. At
the relatively high doses of 25 and 75 ug/kg SC, CCK-8
blocked the hypoactivity and hyperactivity effects of mor-
phine on hamster running wheel behavior at 40-60 min and
80-100 min after opiate injection. respectively. In an initial
pilot study, no interaction of CCK-8 and morphine on ham-
ster running wheel activity was observed at 5.0 ug/kg CCK
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(unpublished observations). Comparatively high doses of
CCK-8 (cf. [33]) are required to affect morphine elicited
changes in activity in golden hamsters.

The effect of high doses of CCK-8 on morphine-induced
hypoactivity and hyperactivity in hamsters compares with
the effects of naloxone and naltrexone, which can block both
morphine sedation and hyperactivity [20, 23, 24]. The pres-
ent effect contrasts with the often reported analgesia and
reduction in activation or motility in humans, rats and mice
after administration of CCK-like peptides alone [5, 26, 32,
33], although a tendency of 75 ug/kg CCK to depress activity
in hamsters was observed at 0-40 min after CCK and saline
injections. Cricetids and murids display many other well-
documented differences in response to opiates and peptides
(e.g., [12.15)).

Results of this experiment are consistent with previous
reports that CCK-8 antagonizes the effects of opiate agonists
on analgesia [6,7], catalepsy [10], and feeding (1,18]. Our
findings are also in accord with the reports that proglumide,
a CCK blocker, or active immunization against CCK poten-
tiates morphine-induced analgesia [8,29] and hypoactivity
[3]. The coextensive distribution of CCK-8 and endogenous
opiates in brain [27] allows for many central sites of opioid
peptide and CCK-like peptide interaction. For example, the
dorsomedial hypothalamus is required for both naloxone and
CCK-8 to inhibit feeding [2]. Alternatively, the interactions
of the central and peripheral actions of CCK-8 and/or opioid
peptides may account for the observed antagonism.

Thus, we have found further experimental evidence to
support the hypothesis that endogenous CCK-8 may antag-
onize endogenous opioid peptides in the control of behavior.
We have extended this putative interactive control of CCK-8
and opioids to the case of locomotor behavior in hamsters.
CCK-8 and the endogenous opioids may well constitute inte-
grative peptide co-antagonists in the coordinated control of
several classes of adaptive behaviors. Our evidence
strengthens the notion that CCK-8 is a candidate for the
hypothesized endogenous naloxone-like substance [11,13].
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